If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80d^2-5d=0
a = 80; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·80·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*80}=\frac{0}{160} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*80}=\frac{10}{160} =1/16 $
| 15-8x-3x=x+3 | | -16+5r=2-4r | | 4(x-1)-11x=17 | | p-5p=10-2p | | -2(x+6)+3=-11x+4(x+40 | | 4(2x-6)=3x-24+5x | | 6x-10=4(x+3)= | | -3(8+3m)=-87 | | 4(2x-3)=x-11 | | 12+20x-7=5(4x+2) | | 2(8n+1)=-94 | | 8x-9=2x+7+6x-16 | | 8+3x=7x+8 | | -6(w+3)=-3w-24 | | F(x)=3•2x | | 6x^2-14x+13=0 | | v+8=-2v+4v | | 3(1-7p)=150 | | 6(1+2x)=90 | | 3^x+4=5^8x | | t+25/8=9 | | 9+a/2=17 | | 8x+4=(2x+10 | | 5^x+3=3^2x-3 | | n4=256 | | k/1+9=9 | | (5x)(1)=36 | | F=(-5)10x+3 | | 3n^2+13n+12=0 | | 33n^2+13n+12=0 | | Y-8=2(x+2) | | 3(3n^2+13n+12)=0 |